【Linux网络】认识协议(TCP/UDP)、Mac/IP地址和端口号、网络字节序、socket套接字

news/2025/2/22 6:40:44
头像
⭐️个人主页:@小羊
⭐️所属专栏:Linux
很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~

动图描述

目录

    • 1、初识协议
    • 2、Mac、IP地址
    • 3、端口号
    • 4、网络字节序
    • 5、socket


1、初识协议

  • 协议就是一种约定。
  • 如何让不同厂商生产的计算机之间能够互相通信?需要由权威组织或公司制定网络协议。
  • 协议本质也是软件,在设计上为了更好的进行模块化,解耦合,因此被设计为层状结构。

协议本质也是软件,为了更好的模块换,降低耦合度,所以被设计为层状结构。在Linux网络协议栈中,各个层次协同工作,以实现数据的封装、传输、路由和接收。从底层到高层,这些层次包括:

  1. 链路层(数据链路层):负责物理网络上的数据传输,包括帧的封装、错误检测和纠正等。在Linux中,这一层通常与特定的网络接口卡(NIC)驱动程序相关联。

  2. 网络:提供IP地址管理和路由功能,确保数据包能够正确地从一个网络传输到另一个网络。Linux支持IPv4和IPv6两种IP协议版本。

  3. 传输层:提供端到端的通信服务,确保数据的可靠传输或快速、不可靠的传输。TCP(传输控制协议)提供可靠的数据传输,而UDP(用户数据报协议)则提供无连接的数据传输服务。

  4. 应用层:提供用户和网络服务之间的接口,包括HTTP(用于Web浏览)、SMTP(用于电子邮件发送)、FTP(用于文件传输)等多种应用层协议。

一般而言:

  • 对于一台主机,它的操作系统内核实现了从传输层到物理层的内容
  • 对于一台路由器,它实现了从网络层到物理层
  • 对于一台交换机,它实现了从数据层到物理层
  • 对于一台集线器,它只实现了物理层

传输层的典型代表:

TCP协议UDP协议
传输层协议传输层协议
有连接无连接
可靠传输不可靠传输
面向字节流面向数据报

TCP协议格式:
在这里插入图片描述

  • 确认应答至少应该是一个完整的TCP报头
  • 确认序号 = 序号 + 1,表示该序号之前的内容被全部收到了
  • 为什么要有序号和确认序号两个序号,并且是独立的字段?
    TCP报文,大多数情况下既是应答,又是数据,即捎带应答机制,这个时候序号和确认序号这两个字段要被同时使用。

TCP 将每个字节的数据都进行了编号,即为序列号。每一个 ACK 都带有对应的确认序列号,意思是告诉发送者,我已经收到了哪些数据,下一次你从哪里开始发。

  • 4位首部长度:这个字段的单位是4字节,取值范围是0到15,乘以4后得到报头的实际字节长度范围是20到60字节。当首部长度为5时,表示的是标准的20字节报头。

6 位标志位:用于区分报文类型

标志位说明
URG紧急指针是否有效
ACK表明自己是应答报文
PSH提示接收端应用程序立刻从 TCP 缓冲区把数据读走
RST对方要求重新建立连接,我们把携带 RST 标识的称为复位报文段
SYN请求建立连接,我们把携带 SYN 标识的称为同步报文段
FIN通知对方,本端要关闭了,我们称携带 FIN 标识的为结束报文段
  • 16位窗口大小流量控制,由接收缓冲区剩余空间大小决定,由滑动窗口实现
  • 超时重传:在TCP连接中,当发送方发送一个数据段后,会启动一个超时计时器,如果在计时器超时之前,发送方没有收到接收方的确认(ACK)报文,那么发送方就会认为该数据段已经丢失,并重新发送该数据段,直到收到确认报文或达到重传次数限制为止。

在正常情况下,TCP 要经过三次握手建立连接,四次挥手断开连接。

在这里插入图片描述

为什么要三次握手?
建立双方主机通信的意愿共识,双方验证全双工信道的通畅性。

  • 如果服务器不关闭sockfd,则只会完成两次挥手,服务器就会长时间处于close_wait状态。

UDP协议格式:
在这里插入图片描述

  • 无连接:知道对端的 IP 和端口号就直接进行传输,不需要建立连接;

  • 不可靠:没有确认机制,没有重传机制,如果因为网络故障该段无法发到对方,UDP 协议层也不会给应用层返回任何错误信息;

  • 面向数据报:不能够灵活的控制读写数据的次数和数量;

  • 16 位 UDP 长度,表示整个数据报(UDP 首部+UDP 数据)的最大长度,如果要传输的数据超过 64K,就需要在应用层手动的分包,多次发送,并在接收端手动拼装;

  • 如果校验和出错,就会直接丢弃;

  • UDP协议的报头是固定的8字节,所以协议的接收方直接截取前8个字节的报头,剩下的就是有效数据。

UDP的缓冲区:

  • 发送缓冲区:UDP 没有真正意义上的发送缓冲区,调用 sendto 会直接交给内核,由内核将数据传给网络层协议进行后续的传输动作;
  • 接收缓冲区:UDP的接收缓冲区不能保证收到的 UDP 报的顺序和发送 UDP 报的顺序一致,如果缓冲区满了,再到达的 UDP 数据就会被丢弃;

2、Mac、IP地址

每台主机在局域网上,要有唯一的标识来保证主机的唯一性:mac 地址

以太网中,任何时刻,只允许一台机器向网络中发送数据。如果有多台同时发送,会发生数据干扰,我们称之为数据碰撞,所有发送数据的主机要进行碰撞检测和碰撞避免,没有交换机的情况下,一个以太网就是一个碰撞域,局域网通信的过程中,主机对收到的报文确认是否是发给自己的,是通过目标mac地址判定的。

其中每层都有协议,当我们进行传输流程的时候,要进行封装和解包:
在这里插入图片描述
Tcp/IP通讯过程:
在这里插入图片描述

IP 地址是在 IP 协议中, 用来标识网络中不同主机的地址,对于 IPv4 来说, IP 地址是一个 4 字节,32 位的整数,我们通常也使用 “点分十进制” 的字符串表示 IP 地址, 例如1.94.9.200,用点分割的每一个数字表示一个字节,范围是 0 - 255。

在这里插入图片描述

Mac地址 vs IP地址:
唐僧从东土大唐出发,要去西天拜佛求经,途中要经过女儿国和黑风岭,女儿国和黑风岭是相邻两地。

  • 东土大唐 -> 西天:源IP地址 -> 目的IP地址
  • 女儿国 -> 黑风岭:源Mac地址 -> 目的Mac地址

其中经过的各个国家就是路由器,相邻的国家在同一个局域网中,路由器路由的下一个目的地是根据目的IP地址路由的,局域网通信需要Mac地址指路,一般Mac地址只在局域网中有效,IP地址几乎不变。

IP在网络中标识主机的唯一性,数据传输到主机不是目的而是手段,最终到达主机内的目的进程才是目的。但是在主机中,同一时间进程可能有很多,那怎么找到目的进程呢?


3、端口号

端口号(port)是传输层协议的内容,是一个2字节16位的整数,端口号标识唯一进程,一个端口号只能被一个进程占用

IP地址+端口号能够标识网络中的唯一进程。
网络通信,本质上也是进程间通信。

其中 0 - 1023 是知名端口号,HTTP, FTP, SSH等这些广为使用的应用层协议,它们的端口号都是固定的。1024 - 65535 是操作系统动态分配的端口号,比如客户端程序的端口号就是有操作系统动态分配的。

pid也可以标识唯一进程,为什么还要引入端口号呢?
进程pid属于系统概念,如果继续沿用pid标识唯一进程,会增加耦合度。另外,一个进程可以绑定多个端口号,但一个端口号不能被多个进程绑定。

网络通信的本质,也是进程间通信,本质是两个互联网进程代表人来进行通信。IP + port 叫做套接字socket。

一个进程可以 bind 多个端口号,但一个端口号不能被多个进程 bind。


4、网络字节序

内存中的多字节数据相对于内存地址有大端和小端之分,网络数据流同样有大端小端之分,如何定义网络数据流的地址?

  • 网络数据流的地址被规定:先发出去的是低地址,后发出去的是高地址。
  • TCP/IP协议规定,网络数据流应采用大端字节序,即低地址高字节。

为使网络程序具有可移植性,使用样的C代码在大端和小端机器上编译后都能正常运行,可以调用下面库函数做网络字节序主机字节序的转换。

#include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t hostlong);
uint16_t ntohs(uint16_t hostshort);
  • h表示hostn表示networkl表示32位长整数,s表示16位短整数。

5、socket

socket常见API:

// 创建 socket 文件描述符 (TCP/UDP, 客户端 + 服务器)
int socket(int domain, int type, int protocol);

// 绑定端口号 (TCP/UDP, 服务器)
int bind(int socket, const struct sockaddr *address,socklen_t address_len);

// 开始监听 socket (TCP, 服务器)
int listen(int socket, int backlog);

// 接收请求 (TCP, 服务器)
int accept(int socket, struct sockaddr* address,socklen_t* address_len);

// 建立连接 (TCP, 客户端)
int connect(int sockfd, const struct sockaddr *addr,socklen_t addrlen);

socket:

  1. socket()打开一个网络通讯端口,如果成功,就像open()一样返回一个文件描述符,出错返回-1
  2. 应用程序可以像读写文件一样用 read/write 在网络上收发数据
  3. 对于 IPv4, family 参数指定为 AF_INET
  4. 对于 TCP 协议,type 参数指定为 SOCK_STREAM,表示面向流的传输协议
  5. protocol 参数指定为 0 即可

bind:

  1. bind()成功返回 0,失败返回-1
  2. bind()的作用是将参数 sockfd 和 myaddr 绑定在一起,使 sockfd 这个用于网络通讯的文件描述符监听 myaddr 所描述的地址和端口号
  3. struct sockaddr *是一个通用指针类型,myaddr 参数实际上可以接受多种协议的 sockaddr 结构体,而它们的长度各不相同,所以需要第三个参数 addrlen指定结构体的长度,我们可以对 myaddr 参数这样初始化:
struct sockaddr_in local;
memset(&local, 0, sizeof(local));
local.sin_family = AF_INET;
local.sin_port = htons(_port);
local.sin_addr.s_addr = INADDR_ANY;

listen:

  1. listen()声明 sockfd 处于监听状态,并且最多允许有 backlog 个客户端处于连接
    等待状态,如果接收到更多的连接请求就忽略
  2. listen()成功返回 0,失败返回-1

accept:

  1. 三次握手完成后,服务器调用 accept()接受连接
  2. 如果服务器调用 accept()时还没有客户端的连接请求,就阻塞等待,直到有客户端
    连接上来
  3. addr 是一个传出参数,accept()返回时传出客户端的地址和端口号
  4. 如果给 addr 参数传 NULL,表示不关心客户端的地址
  5. addrlen 参数是一个传入传出参数(value-result argument),传入的是调用者提供的,缓冲区 addr 的长度以避免缓冲区溢出问题,传出的是客户端地址结构体的实际长度

connect:

  1. 客户端需要调用 connect()连接服务器
  2. connect 和 bind 的参数形式一致,区别在于 bind 的参数是自己的地址,connect 的参数是对方的地址
  3. connect()成功返回 0,出错返回-1

注意:

  1. 由于客户端不需要固定的端口号,因此不必调用 bind(),客户端的端口号由内核自动分配
  2. 客户端不是不允许调用 bind(),只是没有必要显示的调用 bind()固定一个端口号,否则如果在同一台机器上启动多个客户端,就会出现端口号被占用导致不能正确建立连接
  3. 服务器也不是必须调用 bind(),但如果服务器不调用 bind(),内核会自动给服务器分配监听端口,每次启动服务器时端口号都不一样,客户端要连接服务器就会遇到麻烦

sockaddr结构:

sock API是一层抽象的网络编程接口,适用于各种底层网络协议,各种网络协议的地址格式并不相同。

在这里插入图片描述
socket API 可以都用struct sockaddr*类型表示,在使用的时候需要强制转换成sockaddr_in,增加了程序的通用性。


本篇文章的分享就到这里了,如果您觉得在本文有所收获,还请留下您的三连支持哦~

头像

http://www.niftyadmin.cn/n/5861823.html

相关文章

MySQL日志undo log、redo log和binlog详解

MySQL 日志&#xff1a;undo log、redo log、binlog 有什么用&#xff1f; 一、前言 在MySQL数据库中&#xff0c;undo log、redo log和binlog这三种日志扮演着至关重要的角色&#xff0c;它们各自承担着不同的功能&#xff0c;共同保障了数据库的正常运行和数据的完整性。了解…

DeepSeek 助力 Vue 开发:打造丝滑的缩略图列表(Thumbnail List)

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 Deep…

Spring监听器Listener

目录 1、Spring监听器简介 2、事件&#xff08;Event&#xff09; 3、监听器&#xff08;Listener&#xff09; 3、事件发布器 4、监听器使用 4.1、自定义事件 4.2、自定义监听器 4.3、发布事件 4.4、测试 4.5、使用注解方式监听 4.6、异步事件处理 5、总结 1、Spri…

除了Axios,如何用fetch处理403错误?

使用 fetch API 处理 403 错误与使用 Axios 类似&#xff0c;但需要手动检查响应状态。以下是一些最佳实践和示例&#xff0c;展示如何在使用 fetch 时优雅地处理 403 错误。 1. 基本的 Fetch 请求 首先&#xff0c;您需要进行一个基本的 fetch 请求&#xff0c;并检查响应的…

k8s容器运行时环境选型指南

引言 随着云原生技术的普及&#xff0c;Kubernetes已成为容器编排的事实标准&#xff0c;而容器运行时&#xff08;Container Runtime&#xff09;作为其核心底层组件&#xff0c;直接影响着集群的性能、安全性和运维效率。2022年Kubernetes正式弃用Dockershim&#xff0c;标志…

HTTPS 通信流程

HTTPS 通信流程时序图&#xff1a; #mermaid-svg-HWoTbFvfih6aYUu6 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-HWoTbFvfih6aYUu6 .error-icon{fill:#552222;}#mermaid-svg-HWoTbFvfih6aYUu6 .error-text{fill:#…

消息队列-持续更新中

消息队列 0、消息队列官方参考文档 MQ官方参考文档 RocketMQ 官方文档&#xff1a; https://rocketmq.apache.org/docs/quick-start/ RocketMQ 中国开发者中心&#xff1a;http://rocketmq.cloud/zh-cn/ Kafka 官方文档&#xff1a; http://kafka.apache.org/documentation/ …

伪404兼容huawei生效显示404

根据上述思考&#xff0c;以下是详细的中文分步说明&#xff1a; --- **步骤 1&#xff1a;获取目标设备的User-Agent信息** 首先&#xff0c;我们需要收集目标设备的User-Agent字符串&#xff0c;包括&#xff1a; 1. **iPhone设备的User-Agent**&#xff1a; Mozi…